Abstract

The production of synthetic fuels and chemicals from solar energy and abundant reagents offers a promising pathway to a sustainable fuel economy and chemical industry. For the production of hydrogen, photoelectrochemical or integrated photovoltaic and electrolysis devices have demonstrated outstanding performance at the lab scale, but there remains a lack of larger-scale on-sun demonstrations (>100 W). Here we present the successful scaling of a thermally integrated photoelectrochemical device—utilizing concentrated solar irradiation—to a kW-scale pilot plant capable of co-generation of hydrogen and heat. A solar-to-hydrogen device-level efficiency of greater than 20% at an H2 production rate of >2.0 kW (>0.8 g min−1) is achieved. A validated model-based optimization highlights the dominant energetic losses and predicts straightforward strategies to improve the system-level efficiency of >5.5% towards the device-level efficiency. We identify solutions to the key technological challenges, control and operation strategies and discuss the future outlook of this emerging technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.