Abstract

High-power laser delivery with near-diffraction-limited beam quality is typically limited to tens of metres distances by nonlinearity-induced spectral broadening inside the glass core of delivery fibres. Anti-resonant hollow-core fibres offer not only orders-of-magnitude lower nonlinearity but also loss and modal purity comparable to conventional beam-delivery fibres. Using a single-mode hollow-core nested anti-resonant nodeless fibre with 0.74 dB km−1 loss, we demonstrate the delivery of 1 kW of near-diffraction-limited continuous-wave laser light over a 1 km distance, with a total throughput efficiency of ~80%. From simulations, a further improvement in transmitted power or length of more than one order of magnitude should be possible in such air-filled fibres, and considerably more if the core is evacuated. This paves the way to multi-kilometre, kilowatt-scale power delivery that is potentially useful not only for future manufacturing and subsurface drilling but also for new scientific possibilities in sensing, particle acceleration and gravitational wave detection. Microstructured optical fibre is shown to be able transmit high-power laser light over long distances with high throughput efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call