Abstract

The development of large-scale synthetic methods for high quality carbon quantum dots (CQDs) is fundamental to their applications. However, the macroscopic preparation and scale up synthetic of CQDs is still in its infancy. Here, we report a facile, green, kilogram-scale synthesis of high quality fluorescent CQDs derived from poplar leaves via a one-step hydrothermal method. Notably, the throughput of CQDs can reach a level up to as high as 1.4975 kg in one pot. The structure and properties of the as-prepared CQDs were assessed through TEM, XRD, XPS and various spectroscopic methods. The obtained high quality CQDs with a photoluminescent quantum yield of 10.64% showed remarkable stability in aqueous media, rich functional groups, high photostability, consistent photoluminescence within biological pH range and low cytotoxicity. On account of these good properties, we demonstrated the multifunctional application to electrocatalytic water splitting, Fe3+ sensing and bioimaging. It showed remarkable electrocatalytic activity, Fe3+ sensitivity and good biocompatibility. This study provides a green, facile, inexpensive and large-scale method for producing high quality CQDs, which provides application value for large-scale production of CQDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.