Abstract

The development of shape-memory hemostatic agents is crucial for the treatment of deep incompressible bleeding tissue. However, there are few reports on biomaterials that can monitor bacterial infection at the wound site in real time following hemostasis and effectively promote repair. In this study, we propose a multifunctional QCSG/FLZ cryogel composed of glycidyl methacrylate-functionalized quaternary chitosan (QCSG), fluorescein isothiocyanate (FITC), and a lysozyme (LYZ)-modified zeolitic imidazolate framework (ZIF-8) for incompressible bleeding tissue hemostasis and wound repair. QCSG/FLZ cryogels possess interconnected microporous structure and enhanced mechanical properties, allowing them to be molded into different shapes for effective hemostasis in deep incompressible wounds. Furthermore, the fluorescence quench signal of QCSG/FLZ cryogels enables timely monitoring of bacterial infection when wound triggers infection. Meanwhile, the acidic microenvironment of bacterial infection induces structural lysis of ZIF-8, releasing LYZ and Zn2+, which effectively kill bacteria and accelerate wound repair. In conclusion, our study not only provides potential application of QCSG/FLZ cryogels for hemostasis in deep incompressible wounds but promisingly promotes the development of a tissue repair technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call