Abstract
A symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative equals zero. There is a one-to-one correspondence between Killing tensor fields and first integrals of the geodesic flow which depend polynomially on the velocity. Therefore Killing tensor fields relate closely to the problem of integrability of geodesic flows. In particular, the following question is still open: does there exist a Riemannian metric on the 2-torus which admits an irreducible Killing tensor field of rank ≥ 3? We obtain two necessary conditions on a Riemannian metric on the 2-torus for the existence of Killing tensor fields. The first condition is valid for Killing tensor fields of arbitrary rank and relates to closed geodesics. The second condition is obtained for rank 3 Killing tensor fields and pertains to isolines of the Gaussian curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.