Abstract

Histatins, a group of histidine-rich proteins in human saliva, exhibit antimicrobial activity and are therefore considered to be important in the prevention of infections in the oral cavity. Although killing of C. albicans by histatins has been extensively studied, little is known about the processes responsible for this antifungal activity. Recent studies show the requirement of metabolic activity and ATP production for histatin 5 killing activity. Therefore, the goal of this study was to investigate the kinetics of histatin 5 interaction at different temperatures with C. albicans wild type cells and with respiratory deficient mutants of C. albicans. Synthetic histatin 5 was labeled with fluorescein-5-isothiocyanate (FITC) and its association with C. albicans cells was followed by epi-fluorescence microscopy and fluorescence confocal microscopy. At 37 degrees C, histatin 5 accumulates intracellularly, and both killing activity and uptake of unlabeled and FITC-labeled histatin 5 are time- and concentration-dependent. At 4 degrees C, no killing is observed and FITC-histatin 5 is only associated with the cytoplasmic membrane. Internalization and killing activity only occurs after cells are transferred to 37 degrees C. In addition, cellular accumulation of histatin 5 is concomitant with a moderate alteration of membrane integrity leading to the release of UV-absorbing cell components into the medium. The uptake of histatin 5, the release of UV-absorbing materials and killing of C. albicans are markedly decreased by the respiratory inhibitor sodium azide. Concomitantly, respiratory deficient mutants of C. albicans are also less susceptible to histatin 5. These results indicated that histatin 5 killing activity could be directly correlated to histatin 5 internalization. Both of these processes are prevented by modulators of cellular metabolic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.