Abstract

The penicillin industry produces a large amount of penicillin mycelial dreg (PMD), potentially causing severe environmental problems without proper treatment and disposal. To achieve the goals of PMD management, the present work explored the potential of PMD as a novel feedstock to produce biochar with very high adsorption performance. PMD was pyrolyzed at 400–800 °C to prepare biochars (PMD-BCs), and the physical and chemical properties were characterized using various methods. The adsorption capacities of Pb2+ on PMD-BC400, PMD-BC600, and PMD-BC800 were 37.04, 62.89, and 107.53 mg/g, respectively, at a temperature of 25 °C and pH of 5.0. The adsorption process of Pb2+ on PMD-BCs can be well described by the Langmuir model and pseudo-second-order model. Mineral precipitation, ion exchange, functional group complexation and Pb2+-π interaction were involved in the adsorption of Pb2+ on PMD-BCs. Moreover, mineral precipitation and ion exchange dominated Pb2+ sorption on PMD-BCs (84.71–92.73%). This study indicates the transition of PMD to biochar for Pb2+ adsorption is a promising method for PMD utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.