Abstract

Oxytetracycline (OTC) residue in food and environment has potential threats to ecosystem and human health, thus its sensitive monitoring and effective elimination are very important. In this work, a new molecularly imprinted polymer (MIP) composite was prepared through atom transfer radical polymerization by using OTC as template, gold nanoparticles modified carbon nanospheres (Au-CNS) as supporter, ionic liquids (IL) as functional monomer and cross-linking agent. The obtained MIP-IL@Au-CNS composite was characterized by Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. It displayed high imprinting factor (5.50) and adsorption capacity (56.7 mg g−1), and could achieved the adsorption equilibrium in short time (about 15 min). Results also illustrated that the adsorption process basically conformed to the quasi-second-order kinetic model and Freundlich model, and MIP-IL@Au-CNS could be recycled at least 5 times. Furthermore, a sensitive OTC electrochemical sensor was developed by combining MIP-IL@Au-CNS with IL-modified carbon nanocomposites (IL@N-rGO-MWCNT). The resulting sensor demonstrated a linear response to OTC in the wide range of 0.02–20 μM, and the detection limit was down to 5 nM. It also had the advantages of high selectivity, fast elution/regeneration and simple construction procedure. The sensor had been applied to the detection of real samples, and acceptable recovery (96.4%−106%) and RSD (3.2%−6.2%) were obtained. This work expands the application of IL-based MIP in pollutant monitoring and enriching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call