Abstract

Metal nanoclusters (NCs) have attracted extensive interest in electrochemiluminescence (ECL) field, but it is still a significant challenge to prepare high ECL efficiency NCs, which tremendously precludes their application in sensing and imaging. Herein, we report poly(3,4-ethylenedioxythiophene) (PEDOT) as a functional ligand for NCs with a "kill three birds with one stone" role, acting as a stabilizer like existing templates, excitingly, excellent electrical conductivity to accelerate the injection of interfacial electrons, and outstanding electrocatalytic activity toward coreactants (S2O82-), which breaks the convention that traditional ligands act as a double-edged sword in ECL field. As an illustration, PEDOT-hosted Ag NCs were prepared with an unprecedented ECL intensity with S2O82- as a cathodic coreactant, which indicates that this novel ligand strategy will bring exciting opportunities, not only in opening up new horizons for rational development of high ECL efficiency metal NCs but also in advancing their potential applications in light-emitting devices and clinical biosensing. As a proof of concept, the PEDOT-hosted Ag NCs were applied as neoteric ECL emitters to achieve sensitive detection of dopamine (DA), which showcased a wide linear response from 1 nM to 10 mM and a low detection limit of 0.17 nM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call