Abstract
Endometrial cancer (EC) is a common gynecological malignant tumor worldwide. It is imperative to study pathogenesis and therapeutic targets for improving the prognosis of EC. The present study aimed to explore the function and mechanism of kinesin family member C1 (KIFC1) in EC. EC tumor and adjacent normal tissues were collected from 68 pairs of patients. The expression of KIFC1 in tissues and EC cells was analyzed by immunohistochemistry, qRT-PCR or western blot. MTT assay was used to test the cell viability. Flow cytometry was used to determine apoptosis and the cell cycle. Glucose uptake, lactate production, ATP contents and lactate dehydrogenase (LDH) activity were evaluated by a glucose metabolism kit. The expression of HMGA1, c-myc and glycolytic genes was assessed using western blot or qRT-PCR. A mouse xenograft model was established in BALB/c mice to detect tumor growth in vivo. KIFC1 was significantly upregulated in EC tumor tissues compared to adjacent normal control tissues. The upregulated expression of KIFC1 was correlated with poor prognosis in patients. Lentiviral-mediated overexpression of KIFC1 observably enhanced cell viability and reduced the apoptotic rate of Ishikawa and HEC-1B cells. Cell cycle progression was also expedited in the KIFC1 vector group. Moreover, overexpression of KIFC1 elevated glucose uptake, lactate production, ATP contents and LDH activity. However, knockdown of KIFC1 by short hairpin RNA (shRNA) showed the reverse effect on cellular functions. In addition, the expression of c-myc, GLUT1, LDHA and HK2 was increased by the KIFC1 vector. Moreover, HMGA1 regulated the expression of c-myc and glycolytic genes. Upregulated HMGA1 could rescue the effect of KIFC1 knockdown on cellular functions and the expression of glycolytic genes. Finally, KIFC1 knockdown inhibits tumor growth in vivo. The upregulation of KIFC1 was correlated with poor prognosis in EC. KIFC1 promoted aerobic glycolysis in endometrial cancer cells by regulating the HMGA1/c-myc pathway. KIFC1 may be a potential target for the diagnosis and therapy of EC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.