Abstract

The kinesin superfamily of proteins (KIFs) are microtubule motor proteins that use the hydrolysis of ATP to power directional movement along microtubules. KIFs induce microtubule depolymerization to regulate the length and dynamics of microtubules in a variety of cell processes and structures, including the mitotic and meiotic spindles and centriole and interphase microtubules. KIF plays a significant role in the transport of organelles, protein complexes and mRNAs. The brown planthopper (Nilaparvata lugens) is a major insect pest in rice paddy fields. Ovarian development is regulated by multiple factors, including endocrine factors. The role of KIFs in brown planthopper ovarian development remains unknown. We found that downregulation of KIF2A significantly compromised the development and eclosion of the brown planthopper, delayed ovarian cell cycle progression, disrupted ovarian development, reduced the expression of MCM genes required for DNA replication and significantly reduced the number of nuclei in the follicles. We also found a significant reduction in Vg mRNA and protein levels. We conclude that downregulation of KIF2A disrupts the cell cycle progression of cells. Alternatively, the ovarian phenotype could be an indirect effect of a compromised trophic cord. In summary, KIF2A regulates ovarian development via modulating cell cycle progression and/or vitollogenin transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call