Abstract

BackroundThe Translational Genome Research Network in Pancreatic Cancer performed a meta-analysis of publicly available various high-throughput gene analysis panels to identify drugable targets. There, the most differentially expressed gene between normal and cancerous pancreas was Kif20a. The aim of the study was to verify this expression pattern and further characterize Kif20a in pancreatic cancer. Materials and methodsDetailed expression analyses were carried out in pancreatic tissues and in a wide panel of pancreatic cells including ductal adenocarcinoma (PDAC) and neuroendocrine-cancer cell lines as well as immortalized human pancreatic ductal epithelial and primary stellate cells using quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescence, and immunoblot analyses. Effects on proliferation, apoptosis, and cell cycle were assessed by MTT assays, caspase-cleavage assays, and fluorescence-activated cell sorting analysis after Kif20a silencing. Cell motility was assessed by migration and invasion assays as well as time-lapse microscopy. ResultsMean Kif20a messenger RNA expression was 18.4-fold upregulated in PDAC tissues compared with that in the normal pancreas. In line, neuroendocrine-cancer cell lines display a 1.6-fold increase and ductal adenocarcinoma cell lines a 11-fold increase of Kif20a messenger RNA (P = 0.009) in comparison with primary stellate cells. A 7.3-fold overexpression was also found in immortalized pancreatic ductal epithelial cells. Kif20a silencing with small interfering RNA molecules resulted in an inhibition of proliferation, motility, and invasion of pancreatic cancer cell lines. ConclusionsTargeting Kif20a reduces proliferation, migration, and invasion of pancreatic cancer cells. Together with its significant overexpression in PDAC, this makes it a potential target for diagnostic and interventional purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.