Abstract

Mutations in the C-terminal of KIF1A (Kinesin family member 1A) may lead to amyotrophic lateral sclerosis (ALS) through unknown mechanisms that are not yet understood. Using iPSC reprogramming technology and motor neuron differentiation techniques, we generated iPSCs from a healthy donor and two ALS patients with KIF1A mutations (R1457Q and P1688L) and differentiated them into spinal motor neurons (iPSC-MN) to investigate KIF1A-related ALS pathology. Our in vitro iPSC-iMN model faithfully recapitulated specific aspects of the disease, such as neurite fragmentation. Through this model, we observed that these mutations led to KIF1A aggregation at the proximal axon of motor neurons and abnormal accumulation of its transport cargo, LAMP1, resulting in autophagy dysfunction and cell death. RNAseq analysis also indicated that the functions of the extracellular matrix, structure, and cell adhesion were significantly disturbed. Notably, using rapamycin during motor neuron differentiation can effectively prevent motor neuron death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.