Abstract

Diabetic nephropathy (DN) is a major complication of diabetes mellitus and the most frequent cause of end-stage renal disease. DN progresses silently and without clinical symptoms at early stages. Current noninvasive available markers as albuminuria account with severe limitations (late response, unpredictable prognosis, and limited sensitivity). Thus, it urges the discovery of novel markers to help in diagnosis and outcome prediction. Tissue proteomics allows zooming-in where pathophysiological changes are taking place. We performed a differential analysis of renal tissue proteome in a rat model of early DN by 2-dimensional differential gel electrophoresis and mass spectrometry. Confirmation was performed by Western blot, immunohistochemistry (IHC), and selected reaction monitoring (SRM). Rat urine samples were collected and exosomes were isolated from urine to evaluate if these microvesicles reflect changes directly occurring at tissue level. The protein showing maximum altered expression in rat tissue in response to DN was further analyzed in human kidney tissue and urinary exosomes. Regucalcin protein or senescence marker protein-30 (SMP30) (Swiss-Prot Q03336) was found to be strongly downregulated in DN kidney tissue compared with healthy controls. The same trend was observed in exosomes isolated from urine of control and DN rats. These data were further confirmed in a pilot study with human samples. IHC revealed a significant decrease of regucalcin in human kidney disease tissue vs control kidney tissue, and regucalcin was detected in exosomes isolated from healthy donors' urine but not from kidney disease patients. In conclusion, regucalcin protein expression is reduced in DN kidney tissue and this significant change is reflected in exosomes isolated from urine. Urinary exosomal regucalcin represents a novel tool, which should be explored for early diagnosis and progression monitoring of diabetic kidney disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.