Abstract

Notomys alexis (Spinifex hopping mouse) is found in the arid zone of Australia. The structure and function of the kidneys allow this species to conserve water. This study investigated the rate at which N. alexis can reduce urine volume and increase the concentration of electrolytes and solutes when water deprived. It also looked at the response to rehydration, following a period of water deprivation. The laboratory mouse, Mus musculus domesticus, was used for comparison. N. alexis is able to reduce urine volume and increase urine concentration more rapidly than M. m. domesticus when water deprived. This appears to occur prior to any measurable changes in plasma electrolyte concentrations and is not due to reductions in glomerular filtration rate. Gradual water deprivation over a period of 10 days allowed N. alexis to adjust so that urine composition was similar in many ways to animals that had ad libitum access to water, whereas M. m. domesticus required significant water supplementation to maintain body weight at 85% of initial body weight. Ability to concentrate urine rapidly is characteristic of a well-insulated renal medulla [Bankir, L., DeRouffignac, C., 1985. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249, R643–666]. However, a well-insulated medulla is normally associated with slow dilution of urine when animals are rehydrated. N. alexis was able to produce dilute urine very rapidly following rehydration of water deprived animals. Physiological control of renal function appears to be complex. Although M. m. domesticus is able to produce concentrated urine, it is unable to survive without free water and responds more slowly to water deprivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.