Abstract
Although urine-based liquid biopsy has received considerable attention, there is a lack of a simple model to optimize assay parameters, including cell-free DNA (cfDNA) extraction, bisulfite modification, and bis-DNA recovery after conversion for methylation analysis in urine. The primary aim of this work was to establish a practical model by developing a quantitative methylation-sensitive PCR (qMS-PCR) assay for PAX2 based on hypermethylated PAX2 cfDNA that couldbedetected in healthy human urine. We firststudiedthe methylation status of PAX2 in kidney tissues and whole blood,followedbyanassessment ofcommercial kits for bisulfite conversion and bis-DNA recovery. Furthermore, we investigated the influence of urine storage and collection conditions on the preservation of methylated PAX2 in urine samples by qMS-PCR. As expected, PAX2 methylation was identified in urine but not in blood. Two commercial kits (CellCook and Zymo Research) had similar conversion efficiency and bis-DNA recovery. Urine storage for up to 5days did not changePAX2methylation estimates. Overall, cold storage of urine samples and the CellCook urine container maintained higher levels of methylated PAX2 compared to urine kept at room temperature and the conventional tubes, respectively. These findings highlight the importance of using the correct approaches/kits and optimizing experimental conditions as a diagnostic tool in the clinical setting. Our study provides insights on the development of urine-based liquid biopsy with DNA methylation as a universal biomarker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.