Abstract
Symmetry-breaking phase transitions are often accompanied by the formation of topological defects, as in cosmological theories of the early universe, superfluids, liquid crystals or solid-state systems. This scenario is described by the Kibble-Zurek mechanism, which predicts corresponding scaling laws for the defect density ρ. One such scaling law suggests a relation ρ≈τQ-1/2 with τQ the change of rate of a control parameter. In contrast to the scaling of the defect density during annihilation with ρ≈t-1 , which is governed by the attraction of defects of the same strength but opposite sign, the defect formation process, which depends on the rate of change of a physical quantity initiating the transition, has only rarely been investigated. Herein, we use nematic liquid crystals as a different system to demonstrate the validity of the predicted scaling relation for defect formation. It is found that the scaling exponent is independent of temperature and material employed, thus universal, as predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.