Abstract

Universal dynamics of spontaneous symmetry breaking is central to understanding the universal behavior of spontaneous defect formation in various systems from the early universe, condensed-matter systems to ultracold atomic systems. We explore the universal real-time dynamics in an array of coupled binary atomic Bose-Einstein condensates in optical lattices, which undergo a spontaneous symmetry breaking from the symmetric Rabi oscillation to the broken-symmetry self-trapping. In addition to Goldstone modes, there exist gapped Higgs modes whose excitation gap vanishes at the critical point. In the slow passage through the critical point, we analytically find that the symmetry-breaking dynamics obeys the Kibble-Zurek mechanism. From the scalings of bifurcation delay and domain formation, we numerically extract two Kibble-Zurek exponents, and , which give the static correlation-length critical exponent ν and the dynamic critical exponent z. Our approach provides an efficient way for the simultaneous determination of the critical exponents ν and z for a continuous phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.