Abstract
N6-methyladenosine (m6A) is the most prevalent RNA modification and is associated with various biological processes. Proteins that function as readers and writers of m6A modifications have been shown to play critical roles in human malignancies. Here, we identified KH-type splicing regulatory protein (KHSRP) as an m6A binding protein that contributes to the progression of pancreatic ductal adenocarcinoma (PDAC). High KHSRP levels were detected in PDAC and predicted poor patient survival. KHSRP deficiency suppressed PDAC growth and metastasis in vivo. Mechanistically, KHSRP recognized and stabilized FAK pathway mRNAs, including MET, ITGAV and ITGB1, in an m6A-dependent manner, which led to activation of downstream FAK signaling that promoted PDAC progression. Targeting KHSRP with a PROTAC showed promising tumor suppressive effects in mouse models, leading to prolonged survival. Together, these findings indicate that KHSRP mediates FAK pathway activation in an m6A-dependent manner to support PDAC growth and metastasis, highlighting the potential of KHSRP as a therapeutic target in pancreatic cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.