Abstract
We study the existence of Khovanskii-finite valuations for rational curves of arithmetic genus two. We provide a semiexplicit description of the locus of degree n+2 rational curves in Pn of arithmetic genus two that admit a Khovanskii-finite valuation. Furthermore, we describe an effective method for determining if a rational curve of arithmetic genus two defined over a number field admits a Khovanskii-finite valuation. This provides a criterion for deciding if such curves admit a toric degeneration. Finally, we show that rational curves with a single unibranch singularity are always Khovanskii-finite if their arithmetic genus is sufficiently small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.