Abstract

Inflationary potentials are investigated for specific models in type IIB string theory via flux compactification. As concrete models, we investigate several cases where the internal spaces are weighted projective spaces. The models we consider have two, three, or four Kähler moduli. The Kähler moduli play a role of inflaton fields and we consider the cases where only one of the moduli behaves as the inflaton field. For the cases with more than two moduli, we choose the diagonal basis for the expression of the Calabi–Yau volume, which can be written down as a function of four-cycle. With the combination of multiple moduli, we can express the multi-dimensional problem as an effective one-dimensional problem. In the large volume scenario, the potentials of these three models turn out to be of the same type. By taking the specific limit of the relation between the moduli and the volume, the potentials are reduced to simpler ones which induce inflation. For the case of two Kähler moduli, we exclude the potential as an inflationary model because the moduli might not be stable during inflation. As a toy model, we first consider the simple potential. We calculate the slow roll parameters ϵ, η and ξ for each inflationary potential. Then, we check whether the potentials give reasonable spectral indices ns and their running αs's by comparing with the recently released seven-year WMAP data. For both models, we see reasonable spectral indices for the number of e-folding 47<Ne<61. Conversely, by inserting the observed seven-year WMAP data, we see that the potential of the toy model gives requisite number of e-folds while the potential of the Kähler moduli gives much smaller number of e-folding. Finally, we see that two models do not produce reasonable values of the running of the spectral index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.