Abstract
In correspondence with the manifolds of quasi-constant sectional curvature defined (cf [5], [9]) in the Riemannian context, we introduce in the Kahlerian framework the geometric notion of quasi-constant holomorphic sectional curvature. Some characterizations and properties are given. We obtain necessary and sufficient conditions for these manifolds to be locally symmetric, Ricci or Bochner flat, Kahler η-Einstein or Kahler-Einstein, etc. The characteristic classes are studied at the end and some examples are provided throughout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.