Abstract

On a Kähler manifold we have natural uniform magnetic fields which are constant multiples of the Kähler form. Trajectories, which are motions of electric charged particles, under these magnetic fields can be considered as generalizations of geodesics. We give an overview on a study of Kähler magnetic fields and show some similarities between trajectories and geodesics on Kähler manifolds of negative curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.