Abstract

\begin{abstract} In this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that $u=\mathcal{P}_{\Omega}[\phi]$ and $\phi\in L^{p}(\partial\Omega, \mathbb{R})$, where $p\in[1,\infty]$, $\mathcal{P}_{\Omega}[\phi]$ denotes the Poisson integral of $\phi$ with respect to the hyperbolic Laplacian operator $\Delta_{h}$ in $\Omega$, and $\Omega$ denotes the unit ball $\mathbb{B}^{n}$ or the half-space $\mathbb{H}^{n}$. For any $x\in \Omega$ and $l\in \mathbb{S}^{n-1}$, let $\mathbf{C}_{\Omega,q}(x)$ and $\mathbf{C}_{\Omega,q}(x;l)$ denote the optimal numbers for the gradient estimate $$ |\nabla u(x)|\leq \mathbf{C}_{\Omega,q}(x)\|\phi\|_{ L^{p}(\partial\Omega, \mathbb{R})} $$ and gradient estimate in the direction $l$ $$|\langle\nabla u(x),l\rangle|\leq \mathbf{C}_{\Omega,q}(x;l)\|\phi\|_{ L^{p}(\partial\Omega, \mathbb{R})}, $$ respectively. Here $q$ is the conjugate of $p$. If $q=\infty$ or $q\in[\frac{2K_{0}-1}{n-1}+1,\frac{2K_{0}}{n-1}+1]\cap [1,\infty)$ with $K_{0}\in\mathbb{N}=\{0,1,2,\ldots\}$, then $\mathbf{C}_{\mathbb{B}^{n},q}(x)=\mathbf{C}_{\mathbb{B}^{n},q}(x;\pm\frac{x}{|x|})$ for any $x\in\mathbb{B}^{n}\backslash\{0\}$, and $\mathbf{C}_{\mathbb{H}^{n},q}(x)=\mathbf{C}_{\mathbb{H}^{n},q}(x;\pm e_{n})$ for any $x\in \mathbb{H}^{n}$, where $e_{n}=(0,\ldots,0,1)\in\mathbb{S}^{n-1}$. However, if $q\in(1,\frac{n}{n-1})$, then $\mathbf{C}_{\mathbb{B}^{n},q}(x)=\mathbf{C}_{\mathbb{B}^{n},q}(x;t_{x})$ for any $x\in\mathbb{B}^{n}\backslash\{0\}$, and $\mathbf{C}_{\mathbb{H}^{n},q}(x)=\mathbf{C}_{\mathbb{H}^{n},q}(x;t_{e_{n}})$ for any $x\in \mathbb{H}^{n}$. Here $t_{w}$ denotes any unit vector in $\mathbb{R}^{n}$ such that $\langle t_{w},w\rangle=0$ for $w\in \mathbb{R}^{n}\setminus\{0\}$. \end{abstract}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.