Abstract

Association rule mining, one of the most important and well-researched techniques of data mining. Mining frequent itemsets are one of the most fundamental problems and most time-consuming in association rule mining. Most of the algorithms in literature used to find frequent itemsets satisfying single minimum support threshold. In practice, frequentcy of each item reflects the nature and role of items in transactional databases. This paper proposes an efficient mining parallel algorithm for frequent itemsets with multiple minimum support thresholds (a different minimum item support for each item) on Multiple-core Processors. Proposed algorithm easily extends on distributed computing systems as Hadoop, Spark. Finally, result experiments presented on both synthetic and real-life datasets show the better proposed algorithm than the existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.