Abstract
The notion of mechanical process has played a crucial role in mathematical logic since the early thirties; it has become central in computer science, artificial intelligence, and cognitive psychology. But the discussion of Church's Thesis, which identifies the informal concept with a mathematically precise one, has hardly progressed beyond the pioneering work of Church, Godel, Post, and Turing. Turing addressed directly the question: What are the possible mechanical processes a human computor can carry out in calculating values of a number-theoretic function? He claimed that all such processes can be simulated by machines, in modern terms, by deterministic Turing machines. Turing's considerations for this claim involved, first, a formulation of boundedness and locality conditions (for linear symbolic configurations and mechanical operations); second, a proof that computational processes (satisfying these conditions) can be carried out by Turing machines; third, the central thesis that all mechanical processes carried out by human computors must satisfy the conditions. In Turing's presentation these three aspects are intertwined and important steps in the proof are only hinted at. We introduce K-graph machines and use them to give a detailed mathematical explication of the first two aspects of Turing's considerations for general configurations, i.e. K-graphs. This generalization of machines and theorems provides, in our view, a significant strengthening of Turing's argument for his central thesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.