Abstract
CircRNA is closely related to human disease, so it is important to predict circRNA-disease association (CDA). However, the traditional biological detection methods have high difficulty and low accuracy, and computational methods represented by deep learning ignore the ability of the model to explicitly extract local depth information of the CDA. We propose a model based on knowledge graph from recursion and attention aggregation for circRNA-disease association prediction (KGRACDA). This model combines explicit structural features and implicit embedding information of graphs, optimizing graph embedding vectors. First, we built large-scale, multi-source heterogeneous datasets and construct a knowledge graph of multiple RNAs and diseases. After that, we use a recursive method to build multi-hop subgraphs and optimize graph attention mechanism by gating mechanism, mining local depth information. At the same time, the model uses multi-head attention mechanism to balance global and local depth features of graphs, and generate CDA prediction scores. KGRACDA surpasses other methods by capturing local and global depth information related to CDA. We update an interactive web platform HNRBase v2.0, which visualizes circRNA data, and allows users to download data and predict CDA using model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.