Abstract

A central problem of systems biology is the reconstruction of Gene Regulatory Networks (GRNs) by the use of time series data. Although many attempts have been made to design an efficient method for GRN inference, providing a best solution is still a challenging task. Existing noise, low number of samples, and high number of nodes are the main reasons causing poor performance of existing methods. The present study applies the ensemble Kalman filter algorithm to model a GRN from gene time series data. The inference of a GRN is decomposed with p genes into p subproblems. In each subproblem, the ensemble Kalman filter algorithm identifies the weight of interactions for each target gene. With the use of the ensemble Kalman filter, the expression pattern of the target gene is predicted from the expression patterns of all the remaining genes. The proposed method is compared with several well-known approaches. The results of the evaluation indicate that the proposed method improves inference accuracy and demonstrates better regulatory relations with noisy data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call