Abstract

Keyword spotting refers to detection of all occurrences of any given keyword in input speech utterances. In this paper, we define a keyword spotter as a binary classifier that separates a class of sentences containing a target keyword from a class of sentences which do not include the target keyword. In order to discriminate the mentioned classes, an efficient classification method and a suitable feature set are to be studied. For the classification method, we propose an evolutionary algorithm to train the separating hyper-plane between the two classes. As our discriminative feature set, we propose two confidence measure functions. The first confidence measure function computes the possibility of phonemes presence in the speech frames, and the second one determines the duration of each phoneme. We define these functions based on the acoustic, spectral and statistical features of speech. The results on TIMIT indicate that the proposed evolutionary-based discriminative keyword spotter has lower computational complexity and higher speed in both test and train phases, in comparison to the SVM-based discriminative keyword spotter. Additionally, the proposed system is robust in noisy conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.