Abstract
This article introduces an algorithm to automatically translate a user-specified keyword-based query K to a SPARQL query Q so that the answers Q returns are also answers for K. The algorithm does not rely on an RDF schema, but it synthesizes SPARQL queries by exploring the similarity between the property domains and ranges, and the class instance sets observed in the RDF dataset. It estimates set similarity based on set synopses, which can be efficiently pre-computed in a single pass over the RDF dataset. The article includes two sets of experiments with an implementation of the algorithm. The first set of experiments shows that the implementation outperforms a baseline RDF keyword search tool that explores the RDF schema, while the second set of experiments indicate that the implementation performs better than the state-of-the-art TSA+BM25 and TSA+VDP keyword search systems over RDF datasets based on the “virtual documents” approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.