Abstract

Keyword extraction is vital for Knowledge Management System, Information Retrieval System, and Digital Libraries as well as for general browsing of the web. Keywords are often the basis of document processing methods such as clustering and retrieval since processing all the words in the document can be slow. Common models for automating the process of keyword extraction are usually done by using several statistics-based methods such as Bayesian, K-Nearest Neighbor, and Expectation-Maximization. These models are limited by word-related features that can be used since adding more features will make the models more complex and difficult to comprehend. In this research, a Neural Network, specifically a backpropagation network, will be used in generalizing the relationship of the title and the content of articles in the archive by following word features other than TF-IDF, such as position of word in the sentence, paragraph, or in the entire document, and formats such as heading, and other attributes defined beforehand. In order to explain how the backpropagation network works, a rule extraction method will be used to extract symbolic data from the resulting backpropagation network. The rules extracted can then be transformed into decision trees performing almost as accurate as the network plus the benefit of being in an easily comprehensible format.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.