Abstract

Background: As a known key phrase extraction algorithm, TextRank is an analogue of PageRank algorithm, which relied heavily on the statistics of term frequency in the manner of co-occurrence analysis. Objective: The frequency-based characteristic made it a neck-bottle for performance enhancement, and various improved TextRank algorithms were proposed in the recent years. Most of improvements incorporated semantic information into key phrase extraction algorithm and achieved improvement. Method: In this research, taking both syntactic and semantic information into consideration, we integrated syntactic tree algorithm and word embedding and put forward an algorithm of Word Embedding and Syntactic Information Algorithm (WESIA), which improved the accuracy of the TextRank algorithm. Results: By applying our method on a self-made test set and a public test set, the result implied that the proposed unsupervised key phrase extraction algorithm outperformed the other algorithms to some extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.