Abstract
The development of methods to deal with the informative contents of the text units in the matching process is a major challenge in automatic summary evaluation systems that use fixed n-gram matching. The limitation causes inaccurate matching between units in a peer and reference summaries. The present study introduces a new Keyphrase based Summary Evaluator KpEval for evaluating automatic summaries. The KpEval relies on the keyphrases since they convey the most important concepts of a text. In the evaluation process, the keyphrases are used in their lemma form as the matching text unit. The system was applied to evaluate different summaries of Arabic multi-document data set presented at TAC2011. The results showed that the new evaluation technique correlates well with the known evaluation systems: Rouge1, Rouge2, RougeSU4, and AutoSummENG MeMoG. KpEval has the strongest correlation with AutoSummENG MeMoG, Pearson and spearman correlation coefficient measures are 0.8840, 0.9667 respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.