Abstract

N-heterocyclic carbenes (NHCs) have generated much interest for use as versatile metal-coordinating groups, since they were first synthesized by Arduengo and coworkers in 1991. NHC molecules can be considered as L-type ligands, because they share their non-bonding electron pairs with the σ-accepting orbital of transition metals, and this endows them with strong coordination interactions. NHC-appended molecules have recently been actively exploited as potentially effective ligands for the surface passivation of various colloidal nanomaterials.We investigate the coordination interactions between a few representative colloidal nanocrystals, including gold nanoparticles (AuNPs) and luminescent quantum dots (QDs), and a NHC-based polymer ligand. The latter presents multiple NHC groups and several short poly (ethylene glycol) (PEG) chains as solubilizing blocks. We find that our NHC-decorated ligands rapidly coordinate onto both sets of nanocrystals, which we attribute to their soft Lewis base nature. These ideally match the soft Lewis acid character of transition metal colloid surfaces, promoting strong coordination bonding through soft‐soft interaction. We combine NMR spectroscopy, fluorescence spectroscopy, high-resolution transmission electron microscopy supplemented with dynamic light scattering to characterize the nature of the binding interactions. Furthermore, the long-term stability of the NHC-stabilized nanocolloids have been tested after phase transfer to water, a highly challenging chemical venue for such groups, due to the moisture sensitive nature of NHC molecules. Data show that our NHC-polymer-stabilized AuNPs and QDs exhibit long-term colloidal stability in buffer media while preserving their optical and fluorescing properties, with no sign of degradation or aggregation build up for at least one year of storage. We will discuss the ligand design and synthesis, characterization of the polymer-stabilized nanocrystals under various conditions, with a particular focus on the beneficial effects of ligand multi-coordination interactions onto the nanocolloid surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.