Abstract

In this article, the concept of Fatigue Hydraulic Fracturing (FHF) is described, and its geothermal application is discussed. The basic idea behind fatigue fracturing is to vary the effective stress magnitudes at the fracture tip to optimize fracture initiation and growth. The optimization process can include lowering seismic radiated energy and/or generating fracture networks with various geometry and permeability. Historically, we start referring to results from mechanical laboratory core testing, discrete element simulation of fluid-induced seismicity, and application of cyclic water-fracs at the enhanced geothermal system site Groß-Schönebeck, Germany. Then, an in situ experiment at Äspö Hard Rock Laboratory is summarized to bridge the gap between laboratory core testing and wellbore-size hydraulic fracture treatments in hard rock. Three different fluid injection schemes (continuous, progressive and pulse injection) are tested underground in naturally fractured, crystalline rock mass in terms of associated induced seismicity and permeability performance. Under controlled conditions, hydraulic fractures are extended to about 20–40 m2 in size from a 28 m long, horizontal borehole drilled from a tunnel at 410 m depth. The facture process is mapped by an extensive array of acoustic emission and micro-seismic monitoring instruments. Results from three water-injection tests in Ävrö granodiorite indicate that the fracture breakdown pressure in tendency becomes lower and the number of fluid-induced seismic events becomes less when continuous, conventional fluid injection is replaced by progressive fluid-injection with several phases of depressurization simulating the fatigue treatment. One reason for this may be that in the dynamic, fatigue treatment a larger fracture process zone is generated compared to the size of the fluid pressurized zone developing during the injection phases into crystalline rock. We see mine-scale tests with hybrid sensor arrays of importance to identify and understand the actual hydraulic fracture mechanisms in hard rock. In addition, the mesoscale data obtained underground allow downscaling to laboratory core results, and upscaling to borehole reservoir stimulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call