Abstract

Oxide-based solid-state Li-batteries (SSLiBs) have the potential to be a transformational and intrinsically safe energy storage solution due to their non-flammable ceramic electrolyte that enables the use of high-capacity Li metal anodes and high voltage cathodes for higher energy density over a much wider operating temperature range. However, their progress has been limited due to electrode/electrolyte interfacial issues. In particular for Li-metal anodes concerns over dendrite formation/propagation and the requirement for elevated temperature and high stack pressure are still prevalent. To eliminate these concerns a rational design of tailored structures and interfaces in Li-metal anodes will be presented. In addition, progress toward full cells using these tailored structures and interfaces will be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call