Abstract

One of the key challenges in railway engineering is how to provide passengers an efficient, secure, and safe service. To achieve this, operators and stakeholders demand robust and high-capacity train-to-wayside broadband radio. Current radio technologies implement MIMO (Multiple-Input Multiple-Output) technology, whose use requires a good characterization of the propagation. In this paper, the results of an experimental campaign on MIMO propagation in subway tunnels are presented. The campaign makes use of an OFDM testbed at roughly 600 MHz, allowing the measurement of the 2×2 channel transfer matrix under different conditions regarding polarization, antenna separation, tunnel cross section, power allocation algorithm, and so forth. Particular attention is paid to the probability of appearance of keyholes, which imply a severe degradation of the MIMO performance even when transmitter and receiver antennas are uncorrelated. The measurements are carried out using a train that travels at the normal operative velocities. As a result of the measurements, it has been found that the use of vertical polarization at both terminals is advantageous and that, on average but for a narrow margin, λ-spaced antennas outperform λ/2-spaced ones (90% capacities of 7.00 and 6.76 bps/Hz, resp.), although the latter show a lower probability of keyholes. However, keyhole probabilities are always below 2%, so their influence on the performance of the whole system is limited.

Highlights

  • Communication between trains and wayside is essential today

  • The likelihood of a physical phenomenon that affects the performance of a MIMO system has been measured

  • The research described in the paper can be related to the use of OFDM systems, such as LTE, in the context of railway applications using frequencies below 1 GHz

Read more

Summary

Introduction

Communication between trains and wayside is essential today. Services like CCTV, CBTC (Communications-Based Train Control), ERTMS (European Rail Traffic Management System), and push-to-talk radio telephony are a few of the most popular services in this area. LTE (and LTE-A as well) has been flagged to be the key technology in the field of railway communications [2], but many operators around the world have opted instead for IEEE 802.11-based solutions This is a very actual topic in the railway field, as shown by the first deliverable of the EU-funded Roll2Rail Project [3]. We provide more results on the keyhole effect and we map the influence of other parameters on the MIMO capacity In this short review of the bibliography, we will only mention a few of the most relevant references: a pioneer paper was centered on narrowband measurements [11] and another one focused on polarization effects in tunnels [12] and broadband measurements [13]; they lack the involvement of any train.

Measurement Setup and Description of the Scenario
Data Model and Signal Processing
Experimental Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.