Abstract

Based on accident data and detector data collected on two expressways in Shanghai, important variables for model construction were selected from the data of traffic flow within 5~10 min before the accident with random forest model. Then, the Bayesian network (BN) model based on the Gaussian mixture model and expected maximum algorithm was established for the analysis of real-time traffic flow state and accident risk. Meanwhile, the transferability of BN model was also assessed. The results show that BN model built with selected important variables is better than that with direct detection data, with the accident prediction accuracy rate of 82.78%. The results of the transferability show that the improved BN model is still better than the traditional model, though the accident prediction accuracy of BN model decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.