Abstract

Agrochemicals are emergingly being implicated in the widespread dissemination of antibiotic resistance genes (ARGs) in agroecosystems. However, minimal research exists on the disturbance of fumigant on soil ARGs. Focusing on a typical fumigant dazomet in a simulated soil microcosm, we characterized the dazomet-triggered timely response and longstanding dynamic of ARGs at one-fold and two-fold field recommended doses using metagenome and quantitative PCR. Dazomet treatments reduced 13.17%-69.98% of absolute abundance of 16S rRNA gene and targeted ARGs, but, awfully, boosted diversity and relative abundance of ARGs up to 1.33–1.60 and 1.62–1.90 folds, respectively. Approximately 77.28% of changes in relative abundance of ARGs could be explained by bacterial community and mobile genetic elements (MGEs). Mechanistically, primary hosts of ARGs shifted from Proteobacteria (control) to Firmicutes and Actinobacteria (treatments) accompanied with corresponding changes in their abundance by combining community analysis, host tracking analysis and antibiotic resistant bacteria assay. Meanwhile, dazomet exposure significantly increased the incidence of MGEs and stimulated the conjugation of antibiotic-resistant plasmid. In addition, absolute abundance of targeted ARGs gradually recovered in the post-fumigation stage. Collectively, our results elucidate the dazomet-triggered emergence and spread of soil ARGs and highlight the importance of navigating toward rational use of fumigant in agricultural fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call