Abstract

In this paper, a novel chaotic secure communication system based on vertical-cavity surface-emitting lasers (VCSEL) with a common phase-modulated electro-optic (CPMEO) feedback is proposed. The security of the CPMEO system is guaranteed by suppressing the time-delay signature (TDS) with a low-gain electro-optic (EO) feedback loop. Furthermore, the key space is enhanced through a unique secondary encryption method. The first-level encrypted keys are the TDS in the EO feedback loop, and the second-level keys are the physical parameters of the VCSEL under variable-polarization optical feedback. Numerical results show that, compared to the dual-optical feedback system, the TDS of the CPMEO system is suppressed 8 times to less than 0.05 such that they can be completely concealed when the EO gain is 3, and the bandwidth is doubled to over 22 GHz. The error-free 10 Gb/s secure optical transmission can be realized when the time-delay mismatch is controlled within 3 ps. It is shown that the proposed scheme can significantly improve the system performance in TDS concealment, as well as bandwidth and key space enhancement, which has great potential applications in secure dual-channel chaos communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.