Abstract

Lactobacilli have the potential to act as reservoirs of antibiotic resistance genes similar to those found in human pathogens, with the risk of transferring these genes to many pathogenic bacteria. In this study, we investigated the role of human polymorphonuclear cells (PMNs) against Lactobacillus spp. both resistant and susceptible to ciprofloxacin (a fluoroquinolone) and the effect of ciprofloxacin on the interaction between PMNs and three Lactobacillus spp. with different patterns of susceptibility to this drug. Hence, the primary functions of PMNs, such as phagocytosis and bacterial intracellular killing, against lactobacilli were investigated. The rate of PMN phagocytosis was high for ciprofloxacin-sensitive and ciprofloxacin-resistant strains. The patterns of intracellular killing of ciprofloxacin-sensitive and ciprofloxacin-resistant strains by PMNs underline that PMNs alone were able to kill lactobacilli. The addition of ciprofloxacin to PMNs did not result in a significant increase in the bacterial uptake by phagocytes. On the contrary, ciprofloxacin had a marked effect on PMN intracellular killing, resulting in increased numbers of killed ciprofloxacin-sensitive bacteria in comparison with antibiotic-free controls. Our data show that by itself, the profile of antibiotic resistance does not constitute an intrinsic factor of greater or lesser pathogenicity toward the host. The ability of PMNs to kill a diverse array of bacterial pathogens is essential for human innate host defense, primarily in immunocompromised patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.