Abstract

AbstractThe survival of oasis is partially determined by the evolution of desert–oasis transitional area (abbr. DOTA) characterized by fragile and unstable environments. This study reveals the function of DOTA in avoiding oasis land degradation from its aeolian environments based on the detailed wind data, in situ observation of wind‐blown sand and granular characteristics of surface sediments from desert to oasis. Results indicate that the DOTA has buffering function in slowing down aeolian desertification in oasis. Additionally, the annual mean wind speed reduces 40·8% from desert to DOTA area but up to 92·8% from desert to oasis. The frequency of sand‐laden wind, drift potential and sand transport all decrease following the section from desert to oasis while surface roughness increases. And the granular characteristics of surface sediments show that the weight percentage of coarse sand decreases but fine sand increases along the section from desert to oasis. This paper reveals that the aeolian environments are of great difference between desert and DOTA and the significant role of DOTA in protecting oasis. Integrated sand control system needs to be settled in the DOTA to strengthen its buffering function. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.