Abstract

To achieve climate and energy goals in the building sector, the current pace of renovating existing structures must double, overcoming prevailing barriers. Key Performance Indicators play a pivotal role in science-based decision making, emphasizing both direct and indirect benefits of building retrofits. The authors aim to contribute to proper metric identification for multi-perspective building performance assessment and formulate a methodology supporting energy planning decisions. They introduce the Global Cost per Emission Savings (GCES), an aggregated indicator encompassing both public (CO2 emissions) and private (global cost) perspectives of diverse retrofit technologies for building HVAC systems. Applied to the Italian residential building stock via the Reference Building approach, the methodology is tested using condensing gas boilers, biomass boilers, and electric heat pumps, revealing diverse environmental and economic performances. Addressing the establishment of effective decision-support tools for policymakers, the paper explores the potential impact of various policies on the favorability of technologies. Different policy scenarios are delineated to analyze how distinct approaches may influence the attractiveness of technologies. Notably, in the baseline scenario, biomass boilers hold an advantage over heat pumps according to the GCES index. However, scenarios involving technology-specific incentives or a greenhouse gases emission tax failed to alter the technological ranking, leaving heat pumps financially uncompetitive. In contrast, the TXPM scenario positions heat pumps as the most financially appealing option, penalizing biomass boilers for high particulate matter emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call