Abstract
Previous studies on cadmium adsorption of calcium carbonate have found that polymorph, and, crystallinity are influential factors for adsorbing cadmium ions. The predominant factor for cadmium adsorption has yet to be elucidated because these factors are linked. To overcome this, here each factor is investigated separately. First, atmospheric grinding prepared surf clam (aragonite phase) and scallop (calcite phase) shells with similar crystallite sizes and specific surface areas. Using adsorption isotherm models, kinetics, X-ray diffraction analysis, and TEM observations, both calcite and aragonite react with cadmium to form cadmium carbonate. The chemisorption follows the adsorption mechanism reported in the literature. Based on the Langmuir isotherm model fitting, the maximum adsorbed amount for the ground surf clam shells is 633.3 mg/g, while that for scallop shells is 195.8 mg/g. Then fine surf clam shell particles with a similar specific surface area, and with a relatively wide range of the aragonite ratio, and crystallite size are prepared via a combination of grinding and a subsequent calcination process. Our experiments where one explanatory variable is changed at a time demonstrate that the polymorph ratio and crystallite size of the ground shells play key roles in the chemisorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.