Abstract
Nowadays, tremendous amount of video is captured endlessly from increased numbers of video cameras distributed around the world. Since needless information is abundant in the raw videos, making video browsing and retrieval is inefficient and time consuming. Video synopsis is an effective way to browse and index such video, by producing a short video representation, while keeping the essential activities of the original video. However, video synopsis for single camera is limited in its view scope, while understanding and monitoring overall activity for large scenarios is valuable and demanding. To solve the above issues, we propose a novel video synopsis algorithm for partially overlapping camera network. Our main contributions reside in three aspects: First, our algorithm can generate video synopsis for large scenarios, which can facilitate understanding overall activities. Second, for generating overall activity, we adopt a novel unsupervised graph matching algorithm to associate trajectories across cameras. Third, a novel multiple kernel similarity is adopted in selecting key observations for eliminating content redundancy in video synopsis. We have demonstrated the effectiveness of our approach on real surveillance videos captured by our camera network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.