Abstract

Faced with the challenges of global climate change, zero-carbon buildings (ZCB) serve as a crucial means to achieve carbon peak and carbon neutrality goals, particularly in the development of tropical island regions. This study aims to establish a ZCB technology system suitable for the unique climatic conditions of tropical islands. By employing methods such as energy flow boundaries, parametric design, and data-driven optimization algorithms, the research systematically analyzes the integrated mechanisms and optimization solutions for energy utilization, energy conservation, energy production, and intelligent systems. The study identifies and addresses key technical challenges faced by ZCB in tropical island regions, including the accurate identification of system design parameters, the precise quantification of the relationship between design parameters and building performance, and the comprehensive optimization of technical and economic goals for zero-carbon operational design solutions. The research results not only provide a comprehensive theoretical framework, promoting the development of architectural design theory, but also establish a practical framework for technology and methods, advancing the integration and application of ZCB technology. The study holds significant practical implications for the green transformation of the tropical island construction industry and the realization of national dual-carbon strategic goals. Future research should further explore the applicability of the technology system and the economic feasibility of optimized design solutions, promoting continuous innovation and development in ZCB technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call