Abstract
Carbon dioxide (CO2) flooding is an effective method to enhance oil recovery in low-permeability reservoirs. Studying key geological factors controlling oil displacement efficiency is of great significance to the CO2 injection scheme design in low-permeability reservoirs. Focusing on low-permeable H reservoir in Songliao Basin, China, this paper describes the contact and connection of sand bodies, natural fractures and high-permeability zones with core samples, log data and experiment firstly. After that, the impact of interaction of sand body connection, natural fracture and high-permeability zone on oil displacement efficiency is determined by using geological and dynamic data in CO2 injection area. Results indicate that the connection of single sand bodies between injectors and producters wells primarily controls CO2 flooding in low-permeability reservoirs. Furthermore, coupling of sand body connection, natural fractures and high-permeability zones is the key geological factor governing oil displacement efficiency of CO2 injection in low-permeability reservoirs, where well or generally-connected sand bodies can improve the efficiency significantly. Meanwhile, the dominant seepage channels in other directions have no influence on producers, which is beneficial to improve CO2 flooding efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.