Abstract

Bacteria use multiple sigma factors to coordinate gene expression in response to environmental perturbations. In Escherichia coli and other γ-proteobacteria, the transcription factor Crl stimulates σ(S)-dependent transcription during times of cellular stress by promoting the association of σ(S) with core RNA polymerase. The molecular basis for specific recognition of σ(S) by Crl, rather than the homologous and more abundant primary sigma factor σ(70), is unknown. Here we use bacterial two-hybrid analysis in vivo and p-benzoyl-phenylalanine cross-linking in vitro to define the features in σ(S) responsible for specific recognition by Crl. We identify residues in σ(S) conserved domain 2 (σ(S)2) that are necessary and sufficient to allow recognition of σ(70) conserved domain 2 by Crl, one near the promoter-melting region and the other at the position where a large nonconserved region interrupts the sequence of σ(70). We then use luminescence resonance energy transfer to demonstrate directly that Crl promotes holoenzyme assembly using these specificity determinants on σ(S). Our results explain how Crl distinguishes between sigma factors that are largely homologous and activates discrete sets of promoters even though it does not bind to promoter DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.