Abstract

In this paper, we analyze the impact of various factors on meeting service level agreements (SLAs) for information technology (IT) incident resolution. Using a large IT services incident dataset, we develop and compare multiple models to predict the value of a target Boolean variable indicating whether an incident met its SLA. Logistic regression and neural network models are found to have the best performance in terms of misclassification rates and average squared error. From the best-performing models, we identify a set of key variables that influence the achievement of SLAs. Based on model insights, we provide a thorough discussion of IT process management implications. We suggest several strategies that can be adopted by incident management teams to improve the quality and effectiveness of incident management processes, and recommend avenues for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.