Abstract
Accumulation of polybrominated diphenyl ethers (PBDEs) in surface soils at elevated concentrations is common at e-waste recycling sites. Even though highly insoluble, migration of PBDEs into the vadose zone and groundwater is possible, due to their association with soil colloids. Here, we show that upon equilibration with artificial rainwater surface and subsurface soil samples collected at an e-waste recycling site release significant quantities of colloids, with the total concentrations of 14 PBDE congeners as high as 990 ng/g dw. The concentrations of different congeners vary markedly in the colloids, and that of BDE-209 is the highest in all the samples. Notably, even the colloids released from the soil collected at a depth of 95–105 cm contain high concentrations of PBDEs. Preferential binding of PBDEs to soil colloids is observed, with the colloids-soil distribution coefficients above 10 in certain cases. The extent of preferential binding displays no apparent correlation with the relative hydrophobicity of the PBDEs, nor can it be explained simply by considering the higher specific surface area, pore volume, and clay content of the soil colloids than the respective bulk soil. Principal component analysis shows that multiple soil properties are collectively responsible for the preferential distribution of PBDEs. Specifically, the differences in pore volume, soil organic carbon content, and pore size between colloids and soils are likely the major factors affecting the distribution of high-concentration PBDEs, whereas the differences in clay content, pore volume and specific surface area are the key factors affecting the distribution of low-concentration PBDEs. The findings clearly show that colloids are an important medium with which PBDEs are associated at contaminated sites, and underline the need of understanding colloid-facilitated transport of PBDEs at e-waste sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.